Search results for "spatio-temporal point proce"
showing 10 items of 15 documents
Minimum contrast for point processes' first-order intensity estimation
2023
In this paper, we exploit some theoretical results, from which we know the expected value of the K-function weighted by the true first-order intensity function of a point pattern. This theoretical result can serve as an estimation method for obtaining the parameter estimates of a specific model, assumed for the data. The only requirement is the knowledge of the first-order intensity function expression, completely avoiding writing the likelihood, which is often complex to deal with in point process models. We illustrate the method through simulation studies for spatio-temporal point processes.
Models and methods for space and space-time interactions in complex point processes with applications on earthquakes
Inhomogeneous spatio-temporal point processes on linear networks for visitors’ stops data
2022
We analyse the spatio-temporal distribution of visitors' stops by touristic attractions in Palermo (Italy) using theory of stochastic point processes living on linear networks. We first propose an inhomogeneous Poisson point process model, with a separable parametric spatio-temporal first-order intensity. We account for the spatial interaction among points on the given network, fitting a Gibbs point process model with mixed effects for the purely spatial component. This allows us to study first-order and second-order properties of the point pattern, accounting both for the spatio-temporal clustering and interaction and for the spatio-temporal scale at which they operate. Due to the strong d…
A multi-scale area-interaction model for spatio-temporal point patterns
2018
Models for fitting spatio-temporal point processes should incorporate spatio-temporal inhomogeneity and allow for different types of interaction between points (clustering or regularity). This paper proposes an extension of the spatial multi-scale area-interaction model to a spatio-temporal framework. This model allows for interaction between points at different spatio-temporal scales and the inclusion of covariates. We fit the proposed model to varicella cases registered during 2013 in Valencia, Spain. The fitted model indicates small scale clustering and regularity for higher spatio-temporal scales.
Weighted local second-order statistics for complex spatio-temporal point processes
2019
Spatial, temporal, and spatio-temporal point processes, and in particular Poisson processes, are stochastic processes that are largely used to describe and model the distribution of a wealth of real phenomena. When a model is fitted to a set of random points, observed in a given multidimensional space, diagnostic measures are necessary to assess the goodness-of-fit and to evaluate the ability of that model to describe the random point pattern behaviour. The main problem when dealing with residual analysis for point processes is to find a correct definition of residuals. Diagnostics of goodness-of-fit in the theory of point processes are often considered through the transformation of data in…
Local Spatio-Temporal Log-Gaussian Cox Processes for seismic data analysis
2022
We propose a local version of the spatio-temporal log-Gaussian Cox processes (LGCPs) employing the Local Indicators of Spatio-Temporal Association (LISTA) functions into the minimum contrast procedure to obtain space as well as time-varying parameters. We resort to the joint minimum contrast method fitting method to estimate the set of second-order parameters for the class of Spatio-Temporal LGCPs. We employ the proposed methodology to analyse real seismic data occurred Greece between 2004 and 2015.
Locally weighted spatio-temporal minimum contrast for Log-Gaussian Cox Processes
2022
We propose a local version of the spatio-temporal log-Gaussian Cox processes (LGCPs) employing the Local Indicators of Spatio-Temporal Association (LISTA) functions into the minimum contrast procedure to obtain space as well as time-varying parameters. We resort to the joint minimum contrast method fitting method to estimate the set of second-order parameters for the class of spatio-temporal LGCPs. This approach has the advantage of being usable in the case of both separable and non-separable parametric specifications of the correlation function of the underlying Gaussian Random Field (GRF).
Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes
2023
A local version of spatio-temporal log-Gaussian Cox processes is proposed by using Local Indicators of Spatio-Temporal Association (LISTA) functions plugged into the minimum contrast procedure, to obtain space as well as time-varying parameters. The new procedure resorts to the joint minimum contrast fitting method to estimate the set of second-order parameters. This approach has the advantage of being suitable in both separable and non-separable parametric specifications of the correlation function of the underlying Gaussian Random Field. Simulation studies to assess the performance of the proposed fitting procedure are presented, and an application to seismic spatio-temporal point pattern…
Self-exciting point process modelling of crimes on linear networks
2022
Although there are recent developments for the analysis of first and second-order characteristics of point processes on networks, there are very few attempts in introducing models for network data. Motivated by the analysis of crime data in Bucaramanga (Colombia), we propose a spatiotemporal Hawkes point process model adapted to events living on linear networks. We first consider a non-parametric modelling strategy, for which we follow a non-parametric estimation of both the background and the triggering components. Then we consider a semi-parametric version, including a parametric estimation of the background based on covariates, and a non-parametric one of the triggering effects. Our mode…
Local test of random labelling for functional marked point processes
2022
We introduce the local t-weighted marked nth-order inhomogeneous K-function, in a Functional Marked Point Processes framework. We employ the proposed summary statistics to run a local test of random labelling, useful to identify points, and consequently regions, where this assumption does not hold, i.e. the functional marks are spatially dependent.